CO2 reforming of methane: valorizing CO2 by means of Dielectric Barrier Discharge
نویسنده
چکیده
The impact of pollution on the environment is causing several problems that are to be reduced as much as possible. One important example is the production of CO2 that is emitted by many transport and industrial applications. An interesting solution is to view CO2 as a source instead of a product that can be stocked. The case considered in this work is the CO2 reformation of methane producing hydrogen and CO. It is an endothermic reaction, for which the activition barrier needs to be overcome. The method of Dielectric Barrier Discharge can do this efficiently. The process relies on the collision of electrons, which are accelerated under an electrical field that is created in the discharge area. This leads to the formation of reactive species, which facilitate the abovementioned reaction. The determination of the electron density is performed by PLASIMO. The study is subsequently continued using the Reaction Engineering module in COMSOL (with an incorporated kinetic mechanism) in order to model the discharge phase. Then COMSOL (continuity and Navier-Stokes equations) is used to model the flow in the post-discharge phase. The results showed that both a 2D and 3D model can be used to model the chemical-plasma process. These methods need strongly reduced kinetic mechanism, which in some cases can cause loss of precision. It is also observed that the present experimental set-up that is modeled needs to be improved. A suggestion is made.
منابع مشابه
Kinetic Model Study of Dry Reforming of Methane Using Cold Plasma
ABSTRACT In this work, the dry reforming of methane was studied using a corona and glow discharge plasma microreactors. A chemical kinetic model was developed to understand the reaction better. The modelization allowed prediction of the reactants conversion according to the energy transfer to the gas (P×τ). The β value is trait of the energy cost, whatever this value was leeser indicated ...
متن کاملEffect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane
CO2 reforming of methane (CRM) over unpromoted and potassium promoted Ni/Al2O3 catalysts was studied. The catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature programmed reduction (TPR), temperature programmed oxidation (TPO) and scanning electron microscope (SEM) techniques. The obtained results showed that addition of K2...
متن کاملInteraction of CO2/CH4 with steel wool in an electrocatalytic dry reforming reactor
Dry reforming is a process allowing simultaneous conversion of hydrocarbons (methane being the prototype molecule used for this study) to syngas using carbon dioxide as an oxidizing agent. Such strategy may eventually become an opportunity for the industrial sector to produce syngas whilst valorizing residual CO2. As reported previously, an iron-based catalyst, i.e. steel wool, activated by an ...
متن کاملPartial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce–ZrO2 catalysts
The partial oxidation and CO2 reforming of methane were studied on Pt/Al2O3, Pt/ZrO2, and Pt/ Ce–ZrO2 catalysts. The reducibility and the oxygen transfer capacity were evaluated by oxygen storage capacity (OSC). The effect of the support on the cleaning mechanism of the catalyst surface was investigated by the sequence of CH4/O2 and CH4/CO2 pulses. The Pt/Ce–ZrO2 catalyst showed the highest sta...
متن کاملA Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor
In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD) reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011